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Abstract. The usual linear renormalization group (LO) used in spin glasses is studied 
when a small nonlinear term is introduced in the relationship between block-spin variables. 
Contrary to what happens in uniform systems, this perturbation gives a singular contribution 
to the fixed-point Hamiltonian within the approximations used. It is then claimed that the 
LRC is inappropriate for spin glass systems. 

1. Introduction 

The study of the singular behaviour of many physical systems near a critical point has 
been successfully accomplished through the renormalization group approach due to 
Wilson (Wilson 1971, Wilson and Kogut 1974, Ma 1976, and references therein). Within 
this approach one carries out the thinning out of degrees of freedom (here spin 
variables) of the system under study by dividing the system into blocks, and associating 
new block variables with the old degrees of freedom within each block. The process 
is repeated until a fixed-point Hamiltonian is found from which the critical properties 
may be obtained. It is common to use a linear renormalization group (LRG), where 
linear is in the sense that the block-spin variables are linearly related to the old spin 
variables. Using this method many critical properties of uniform systems containing 
impurities have been determined to various orders in & = 4 - d  (Ma 1976). For the 
Edwards and Anderson (1975) spin glass model the first LRC works (Harris et ai 1976, 
Chen and Lubensky 1977) carried out, by direct extension of the LRC framework used 
in uniform systems, yielded an upper critical dimension of d, = 6 and the corrections 
in E = 6 - d  of the mean field critical exponents. However, it remains up to now the 
puzzling prediction, of complex thermal exponents in XY and Heisenberg models for 
the spin glass-ferromagnetic-paramagnetic multicritical point in 6 - E  dimensions 
which probably also involves a fourth mixed spin glass-ferromagnetic phase (de 
Almeida and Thouless 1978, Bray and Moore 1980) and the prediction, for a one- 
component spin system, of the absence of the stable fixed points (when there is an 
external field) in 6--E dimensions, accessible from the domain of physical initial 
Hamiltonians (Bray and Roberts 1980). For a thorough review of spin glasses and its 
LRC see the review article by Binder and Young (1986). 

Recent analytical and Monte Carlo calculation (Georges et al 1990, Reger et a/ 
1990, Grannan and Heltzel 1991) in finite dimensions has been giving support to the 
features of the mean field SK model (Sherrington and Kirkpatrick 1975) for spin glasses, 
such as the existence of many distinct phases below the critical temperature (and 
broken ergodicity) with the transition persisting even in the presence of an external 
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field along an Almeida-Thouless transition line (Binder and Young 1986, Mezard et 
a/ 1987). Others approaches using scaling arguments (Fisher and Huse 1986, 1988, 
Bray 1988, and references therein) have questioned the SK mean field picture and in 
turn these scaling ansatzes have also been questioned (Villain 1986, van Enter 1990, 
Niae and Hilhorst 1992). For complex systems like spin glasses, scaling might not be 
like the one used in uniform systems. For instance, in describing the scaling properties 
of the surface of fractals objects such as diffusion-limited aggregates (DLA) an infinite 
hierarchy of scaling exponents is required (Meakin et al 1986, Hilfer 1992). Along this 
line, the viewpoint of the spin glass transition (Campbell 1988, and references therein) 
as a percolation threshold in eigenstate space seems very promising. To fit some of 
the existing data within a scaling approach is still controversial (Bertrand et a/ 1992, 
and references therein). The high-temperature series expansion approach (Klein et a1 
1991, and references therein) requires an unusually high number of terms to give 
reasonable critical exponents and even then the uncertainties cannot be ignored. 
Although it seems that there is now some consensus that at least for the king spin 
glass in d = 3 there occurs a transition at a finite temperature in zero external field, 
no convincing model calculation has yet emerged concerning the spin glass critical 
and condensed phase properties in physical dimensions (say at or close to d = 3 ) .  The 
subject continues to be controversial (Caracciolo et a/ 1991, Huse and Fisher 1991), 
despite the fact that some experiments (Lederman et a/ 1991, Kenning et al 1991) fit 
very well with the SK model calculation results. 

In the study of the critical properties of uniform magnetic systems through the 
renormalization group one has to impose a relationship between the spin variables 
within a block and the new spin variable associated to it, at each RC transformation. 
Within the study of continuous-spin models the most popular relationship is a linear 
one which contains an adjustable parameter b and a 6xed point of the transformation 
is found only for an appropriately fixed value of b (as a matter of fact, there is a line 
of fixed points parametrized by the coefficient of the K 2  term in the Hamiltonian). On 
the other hand, when the relationship is assumed nonlinear the following may be 
found: a new fixed point, there is no longer a line of fixed points, there is no need for 
an adjustable parameter. The qualitative behaviour of the critical properties in uniform 
systems for both forms of relationship is, however, the same (for a more detailed 
comparison the reader is referred to the work of Bell and Wilson (1974)). 

Spin glasses are random magnetic systems with quenched disorder and competing 
interactions. There are few rigorous results in systems with quenched or ‘frozen’ disorder 
and the nature of phase transitions in such systems may be qualitatively quite different 
from that in pure systems as, for instance, in disordered ferromagnets there may occur 
a rounding of the phase transition in that the specific heat may he a smooth function 
of the temperature at the critical point (McCoy and Wu 1968, Harris 1974, Grinstein 
and Luther 1976). At the mean field level, it is well known that the Gibbs statistical 
mechanics for spin glasses presents a breakdown of linear response theory in the 
ordered phase (Bray and Moore 1980, Parisi 1980) and naive linearization even gives 
a wrong critical temperature (Anderson 1977), with singularity arising only for the 
nonlinear susceptibility (Katsura 1976, Suzuki 1977). From these results coming from 
mean field theory it seems judicious to be careful in making use of any kind of 
linearization when studying spin glasses in finite dimensions within the same statistical 
mechanics framework used in mean field theory. 

In this work we study the effect of introducing nonlinearity in the usual LRG for 
the spin glass Gaussian model. For pure systems this analysis was carried out by Bell 
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and Wilson (1974). It is then argued within a first-order perturbation calculation that 
for spin glass systems, with their characteristic effective replica Hamiltonian, the usual 
LRG is a singular transformation with no useful critical fixed point. The fixed point 
must be looked for in the context of nonlinear transformations with breaking of replica 
symmetry as a fundamental ingredient and it is suggested that within the present 
approach, it may be obtained only at a second-order perturbation level which the 
author has not been able to carry out. This might be common to other types of disordered 
systems as well. The singularity of the LRC arises from the fact that the effective 
Hamiltonian for spin glasses contain cubic terms (see equation (1)) which allow a 
nonlinear relationship between old and new block variables containing quadratic terms 
(see below). Problems of strong infrared divergences within the standard spin glass 
field theory have been discussed previously (De Dominicis and Kondor 1990). Here 
we show that divergence also appears within the LRG framework, which may be cured 
using nonlinear transformations although in this case the calcualtion becomes rather 
awkward. An interesting renormalization group theory of the phase transition in 
ultrametric spin glasses was proposed recently (Dotsenko 1990) which may eventually 
be linked to the present work. This will be discussed further in section 3. 

2. The model and its nonlinear transformation 

The Landau-Ginzburg-Wilson (LGW) effective Hamiltonian for an Ising spin glass on 
hypercubic lattices takes the following form, in the replica approach, up to cubic terms 
(Bray and Moore 1978, F'ytte and Rudnick 1979) 

XLGW[QI=! C p(K)Q"'(K)Q"'(-K) 
(.=SI 

where p( K )  = r+ K 2 ,  r = A( T2 - T:), A > 0, W = Z 3 / 6 ,  Z being the coordination 
number of the lattice and a, p ,  . . . = 1 ,2 , .  . . , n are replica indices. Following Bell and 
Wilson (1974) we set up a transformation for the quadratic part of equation ( l ) ,  i.e. 
a transformation where half of the old Q"'(K)  variables are integrated out, and the 
other half are associated with new Q;$(K) variables, with Os IKIS 1. The equations 
defining the renormalization group transformation are 

where &"is the starting Hamiltonian, E(,) the new one, Q"' and Qpp are the old and 
new block variables, respectively, with the rescaling factor L = 2  assumed. Note that 
from now on E means only the quadratic part of equation (1) and is the new 
Hamiltonian obtained through the transformation T [ Q ] ,  i.e., the starting 2 is the 
Gaussian one. The form of the function f ( x )  in equation ( 2 b )  defines the kind of 
renormalization group to be considered. Most of the time, it is assumed thatf(x) = bx, 
which defines a linear renormalization group (LRG) transformation. The usual LRG is 
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recovered from ( 2 a )  and ( 2 b )  when a + CO and the appropriate normalization factors 
are put in. For the LRG, the transformation (2) yields a relation between the correlation 
functions of the original Hamiltonian Pe and the new one %(,,, and this relation fixes 
the value of the parameter b when the transformation has a fixed point, which is 
b* = 2- (d+ .? ) /Z  at the critical point. The parameter a is somewhat superfluous since it 
may he absorbed into the field variables. So far, in this framework this has been the 
only kind of transformation adopted for spin glasses. There is no justification for this 
besides it being the simplest and the one which can be worked out most easily. 

Let ns now set up a nonlinear renormalization group transformation forthe Gaussian 
part of the spin glass model equation (1). In the pure king ferromagnet system, sign 
change under time reversal of the field variables imposes that the second term in the 
nonlinear relationship between  old^ and new field variables must be cubic (see Bell 
and Wilson 1974). For spin glass systems each field variable in equation (1) involves 
two spin variables, time reversal symmetry imposes that the second term in ZLGw must 
be cubic and have the given form in (1) and the first nonlinearity between old and 
new spin glass field variables can be quadratic. Thus the first few terms in a general 
expansion off  (x)  which preserves the time reversal symmetry of the Hamiltonian, 
and its replica space form, equation (1) is (in coordinate space) 

J R L de Almeida 

f [ Q " P ] =  b*@Q"@ +I , = Y P Q " Y Q Y P + d ' P ( Q 0 . 8 ) 3 + ~ e Y 6 Q " Y Q Y 6 Q 6 '  (3) 
and the transformation ( 2 ) ,  keeping only the first two terms in (3), takes the form 

(4) 
The aim now would be to iterate the transformation (4) to find its fixed points. 

This does not seem at all trivial. However, one may get information about the nonlinear 
RG transformation by treating it perturbatively around the LRG fixed point of equation 
(2) (Bell and Wilson 1974). So we put b"' = b*+Sb, and write 

T..b*+sb& To*+ ST ( 5 )  
where to first-order in Sb and Sc, 

The mth iterated form of the transformation, to first order in Sb and Sc, is 
m 

T T b * + s b , s c =  T$*+ 1 TE,;'STTb$. (7) 
I = I  
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As m-m, the correction to the LRG fixed point Hamiltonian X*, to first order in Sb 
and Sc, can be written as 

where 

and 

+(finite terms as m + m) (10) 

with 

and 
L, =2' Lt=Zm-l b,  = b" = (b*)'" 

a m = a ( l - 2 d b ' ) / [ l - ( 2 d b Z ) " ]  e = b r - i  
g ,  = Lrd b* b'a,/ a,- ,  

and 0 is the step-function. The calculation of the above equations follows closely the 
one by Bell and Wilson (1974) for pure systems. 

The contribution in (9) proportional to 66, which contains quadratic field variables, 
is exactly like the one worked out by Bell and Wilson (1974), and for d > 2 diverges 
as m +a. The coefficient of Sc (equation (11)) contains only cubic terms in the Q@s 
which are all finite, and does not yield contributions which could cancel the diverging 
part of Sb in (9), as opposed to what happens in the pure system. Now if we allow 
the inclusion ofthe next terms in (3) to first order, the third one (QmP)' yields quadratic 
(besides finite quartic terms) which can be made to cancel the diverging part of S X , ,  
and the last term shown in (3) gives new diverging contributions which cannot be 
cancelled by appropriately choosing the coefficients of the transformation. These 
divergencies may be controlled, if at all, at least in second-order perturbation which 
the author was unable to carry out. We may state that at the critical fixed point of the 
naive LRG the transformation is singular, and no useful fixed-point Hamiltonian is 
attained from it. It is expected (Jona-Lasinio 1973) that if there are irrelevant parameters 
they should be eliminated by non-singular RG transformation near the fixed point, 
which is not the case here. Thus it becomes hard to tell which parameters are irrelevant 
in a full Landau-Ginzburg-Wilson Hamiltonian and in particular to ascribe an upper 
critical dimension to the model. The proper value of the upper critical dimension for 
spin glasses has also been questioned by De Dominicis and Kondor (1990). 

g,  = L'db'a,,,/al 
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3. Discussion 

In this work it is claimed that the LRG transformation is not appropriate for a model 
described by equation (1). While in an Ising ferromagent (Gaussian model) the 
first-order perturbation of the LRC transformation yields a new perturbed fixed-point 
Hamiltonian (Bell and Wilson 1974), this does not occur in the present case. It seems 
necessary to include more terms of (3) in the transformation (4) than those considered, 
and at least second-order perturbation to find the fixed-point Hamiltonian, a program 
that up to now we have not been able to do. 

The origin of the breakdown of the LRG procedure for spin glasses stems from the 
very LOW effective Hamiltonian equation ( I ) .  The cubic terms in the spin glass field 
variables in equation (1) make the critical fluctuations much worse than in an ordinary 
magnet (Anderson 1977) where such terms do not appear (recall that each Q"@ involves 
two spin variables and so these cubic terms account for six spin variables). Analytically, 
these cubic terms allow as a first nonlinearity, in the RG transformation, quadratic 
terms as in equation (4) and from first-order perturbation we concluded that the usual 
LRG transformation is inappropriate for spin glass systems. This is different from what 
happens in pure systems (Bell and Wilson 1974). The need for a nonlinear transforma- 
tion may be at the root of the absence of stable fixed points (Bray and Roberts 1980) 
and complex critical exponents found previously (Chen and Lubensky 1977, Fisherman 
and Aharony 1980). 

From the above, it seems that to find the appropriate critical fixed-point Hamiltonian 
for spin glasses, in finite dimensions, it is necessary to incIude the next (cubic) terms 
in the nonlinear transformation (4). and carry out the transformation (5) to second 
order. Only then will there be enough t e r m  for a cancellation of the diverging ones 
to occur. In addition it is likely that breaking of replica symmetry will be needed for 
the rescaling factors bap. This shou1.d be expected for thermal fluctuations depend on 
the particular realization of the disorder, with the correlation functions not being 
self-averaging even in the high-temperature phase for one-dimensional random fer- 
romagents (Derrida and Hilhorst 1981, Demda 1984, see also Ludwig 1988) for (in 
finite d )  the king model in a random external field and the Ising spin glass model 
(Sourlas 1987). The factors bmP are.directly related to the correlation functions (recall 
that in pure systems the decay of the correlation function at the critical point fixes the 
value of b at b* = 2-'dt2-""2') and if the correlation functions are not self-averaging 
there should not exist a unique b"@. Recalling that within the spin glass mean field 
theory, critical tluctuations persist to all T <  T, (massless modes, divergent spin glass 
susceptibility) and if this picture is to remain in finite dimensions, this again calls for 
a breaking of replica symmetry among the b"@s, otherwise the RG transformation could 
drive the transformed Hamiltonian to a trivial one. It may be worth pointing out that 
for pure systems with long-range interactions (Bell and Wilson 1975) the non-trivial 
fixed points are accessible only for a choice orb distinct from that used in the short-range 
case. The Hamiltonian equation (1) has naturally in it a 'long-range' interaction but 
in replica space. By assuming a uniform (replica symmetric) rescaling factor b in the 
transformation equation (3) this 'long-range' character is wiped out in the transforma- 
tion and other fixed points become inaccessible to the transformation. This may be 
the origin of the mean field-like behaviour observed in many spin glass systems, which 
arises due to the multiplicity of states in the condensed phase (see also Bray and 
Moore 1982, for other possible explanations). Finally, for king spin glasses the 
existence of a dynamical transition (Derrida and Weisbuch 1987, Derrida 1989, De 
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ArcangeIis et a1 1989, 1991) at a temperature TD well above the spin glass critical 
temperature Tc has been numerically shown. Below To a chaotic phase is found, 
characterized by a non-zero dynamical order parameter. This fact, which is somehow 
reminscent of the Kondo problem must appear from the solution of the RG calculation 
for spin glasses. 

Of course, only further work may vindicate the speculations made above. The spin 
glass phase remains one of the most subtle and fascinating areas of condensed matter 
physics (Bray and Moore 1980), and perhaps the hardest to date. 
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